

Product Guide

Leak Seal
Soil Stabilization
Slab Lifting
Seawall Repair
Manhole Repair
Structural Repair
Floor Repair & Protection
Coatings
Secondary Containment
DOT Highway Bridges

Our Background

Pioneered the use of polyurethane resins for sealing cracks in concrete and helped build that market.

The first to package polyurethane grouts in an easy-to-use Quick-Mix cartridge system over 30 years ago.

The Prime Resins Difference

Prime Resins is a leading manufacturer of chemical grouts, foams, adhesives and coatings for infrastructure repair & protection. We provide solutions for problems in structural repair, leak sealing, soil stabilization, slab lifting, structural repair, coatings/linings.

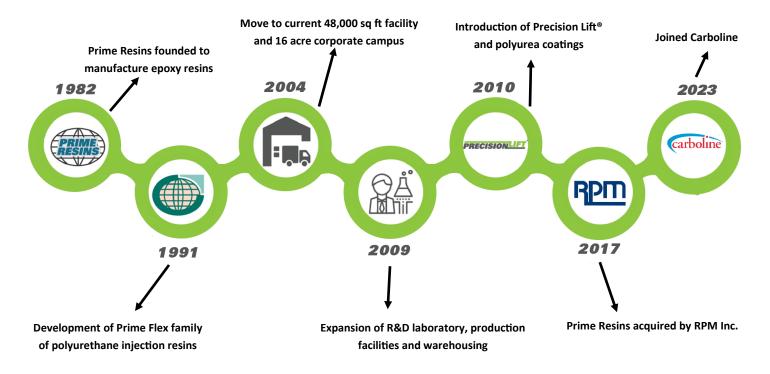
What sets us apart?

Technical expertise: We were the first in our field to offer 24/7 technical support

Turnaround time: Many shipments go out same business day as the order.

Training: We provide on-site training, application assistance, project consultations, and training seminars at our headquarters.

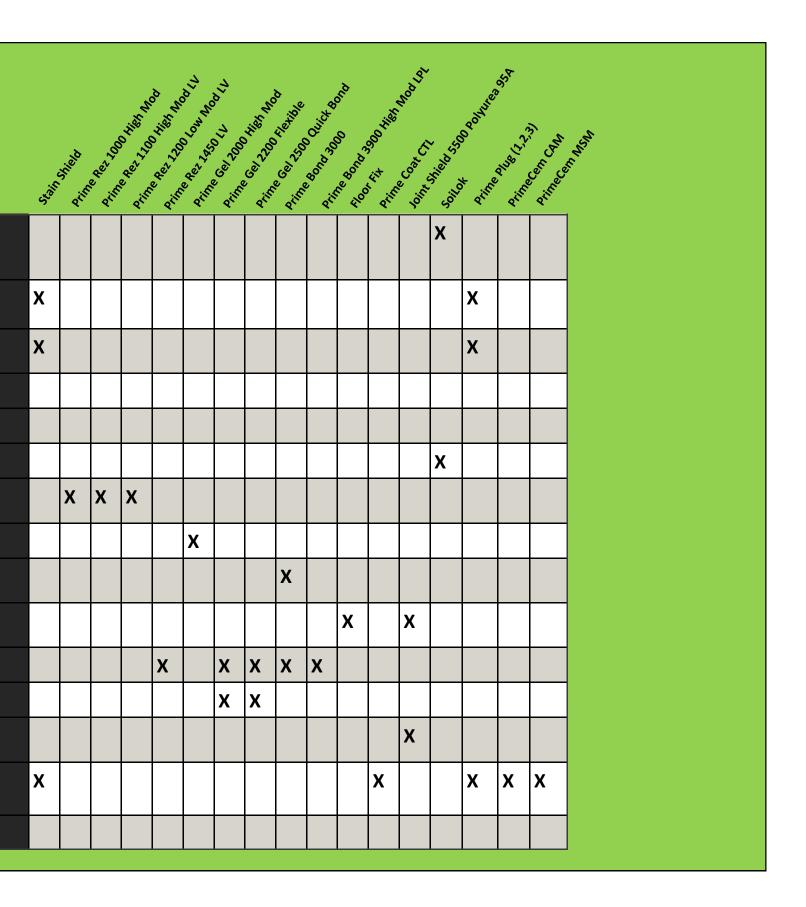
Great value: We offer the best combination of product performance, expertise, and experience.


Solutions focus: We work as partners with our clients to determine causes and to find remedies for your challenges. We are available before and after a purchase to answer questions and support our clients. This approach is in the DNA of the company.

Evolution of Prime Resins

Polyurethane and acrylate grouts, epoxy injection resins, and polyurea and mineral coatings from Prime Resins are optimally formulated to stop leaks, stabilize soils, lift slabs, protect or repair concrete structures, and protect pipes from corrosion and abrasion.

Producing these infrastructure repair solutions is a science, but applying them is an art. Choosing the right product and using the correct application technique are equally important in achieving desired results. Prime Resins has more than 40 years of experience helping customers get the job done. We can find a solution for you!


Product Application Guide

See the following pages for product details that will help guide product selection. Feel free to call us at 800-321-7212 to discuss which product is right for your project.

			۲.	6/8	<i>*</i>							*	*	K**	55*		*		
	Qis	Se	of the transfer of	Sign of the state	Or it out	to state	The state of the s	80 84 50 84	io ser	A CIM	A Signal A S	S. Wirth So	Ap. Warit iso	A. A. W. W. S. O.	S. Villi	Q de	du so cisto de la constante de	install in the second	\$
NSF/ANSI Standard 61 compliant (potable water)	X			X		X LX20 only			X					X					
Leak seal - hairline cracks	X				X		Х	X	Х								Х		
Leak seal - gushing leaks		Х	Х	Х	Х		Х	Х											
Slab lift / Stabilize				Х		Х			X	X	X	Х	Х	X					
Void fill				Х		Х			Х	Х	Х	Х	Х	X			X		
Soil stabilization			х	Х	Х	х	Х										Х		
Concrete crack repair (structural)																			
Surface sealing cracks																			
Epoxy anchoring adhesive																			
Floor repair (concrete cracks, spalls)																			
Bonding agent																			
Floor protection																			
Concrete floor joint filler																			
Coating - concrete protection															Х	X			

Product Lines

Prime Resins has been formulating and manufacturing solutions for sealing leaks, stabilizing soil, lifting slabs, repairing and protecting concrete structures and floors, bonding and anchoring materials, and protecting and lining surfaces for nearly four decades.

Our products include polyurethane and acrylate chemical grouts, epoxies, and polyurea and mineral coatings. We offer a full range of products that are verified to meet NSF/ANSI 61 Standard for contact with potable water. Our products are packaged in containers that range from convenient Quick Mix cartridges to pails, drums, and plastic totes.

We also offer pumps, injection guns, ports, and the other accessories you will need for efficient completion of your projects and for optimal use with our products. Product information and availability are subject to change.

Confirm current product information at www.primeresins.com.

Application - Slab Lifting (in the U.S., Precision Lift[™] products not available through distributors)

	Product Description	Applications	Advantages
Precision Lift™ 3.0#	Two-component, closed cell, hydro insensitive, high density structural polyurethane foam. Density 3.1-3.6 lbs./ft. ³	Undersealing, stabilizing & lifting concrete slabs Compaction grouting Filling voids behind pipes, walls, manholes etc.	Quick set time Hydro insensitive Precise lifting capability Efficient hydraulic lift Densifies soils
Precision Lift™ 4.0#	Two-component, closed cell, hydro insensitive, high density structural polyurethane foam. Density 3.8-4.2 lbs./ft. ³	Undersealing, stabilizing & lifting concrete slabs Compaction grouting Filling voids behind pipes, walls, manholes etc. 4.0 Slow available for slower set times	Quick set time Hydro insensitive Precise lifting capability Efficient hydraulic lift Densifies soils
Precision Lift™ 4.75#	Two-component, closed cell, hydro insensitive, high density structural polyurethane foam. Density 4.5-5.0 lbs./ft. ³	Undersealing, stabilizing & lifting concrete slabs Compaction grouting Filling voids behind pipes, walls, manholes etc.	Quick set time Hydro insensitive Precise lifting capability Efficient hydraulic lift Densifies soils
Precision Lift™ 6.25#	Two-component, closed cell, hydro insensitive, high density structural polyurethane foam. Density 5.75-6.5 lbs./ft. ³	Undersealing, stabilizing & lifting concrete slabs Compaction grouting Runways and industrial slabs	Quick set time Precise lifting capability Efficient hydraulic lift Densifies soils Low viscosity
Stain Shield	Protects surfaces from resin and epoxy stains.	Stain barrier Clean up solvent for Precision Lift products Ideal for slab lifting	Biodegradable Non-toxic
Precision Seal SL	Single-component, polyurethane hybrid, self-levelling sealant designed to offer superior adhesion to concrete. Ideal for sealing cracks and joints in driveways, patios, pool decks, porches and sidewalks. Remains flexible for the life of the sealant, between 5-7 years after cure.	Sealing of horizontal joints, providing excellent adhesion on porous and non-porous substrates Weather resistance in all climates with good extrudability even at low temps	Permanent elastic after full cure No-bubble formation in sealant even in high temperature/ humid applications Color stable and UV resistant Ecological advantages: free of isocyanates, solvents, halogens & acids Can be painted with water based paints

	Product Description	Applications	Advantages
Prime Flex™ 900 XLV	Extra low viscosity, single component, water- activated, hydrophilic, flexible polyurethane. Meets NSF/ANSI Standard 61 for potable water contact.	Seal leaks in hairline cracks and joints Use with oakum to seal wide cracks, joints, gaps or defects	No catalyst needed- up to 600% expansion Flexible, tough foam Pump straight from pail
Prime Flex™ Hydro Gel SX	Low viscosity, single-component, water-activated, multi-ratio hydrophilic gel/foam polyurethane.	Seal leaks in below-grade structures incl. utility vaults & elevator pits; ideal for manholes Can be used to bind soil Crack injection leak seal Curtain grout manholes	No VOCs Versatile: foam or gel High elongation allows thermal movement Seals wide or tight cracks Resistant to chemicals
Prime Flex™ 985 LX 10 & LX20	Two-component, hydrophobic polyurethane expansive foam to fill voids, stabilize soil, underseal concrete slabs. LX 20 meets NSF/ ANSI Standard 61.	Fill voids in, around and under structures; abandoned underground tanks & pipelines Stabilize industrial floors and bridge approach slabs Pipe annulus space grouting	Ideal for wet conditions Binds with sub-soils Low exotherm High strength Regular and fast formulas available
Prime Flex™ 985 5.0	Two-component, closed cell, high density structural polyurethane foam in easy-to-use cartridges.	Undersealing & stabilizing concrete slabs Fill voids behind pipes, walls & manholes	High strength Hydro insensitive Binds with soil
Precision Fill	Two-component, low exotherm, polyurethane foam used to fill voids and underseal concrete slabs	Filling voids under & behind structures Stabilizing soils Undersealing slabs Annular space filling	Highly expansive High strength Low exotherm (will not self ignite) Bonds with soil and to concrete Slow, steady reaction
Prime Flex™ 910	Hydrophobic single- component polyurethane, super low viscosity, water-activated to form a rock hard, watertight mass. Requires catalyst.	Permeation grouting and stabilization Void fill and curtain grout of seawalls Sinkhole remediation	Better penetration in fine soils Vary set time by catalyst ratio Forms watertight mass Pumped as single component Up to 2900% expansion
Prime Flex™ 920	Hydrophobic, low viscosity, highly expansive, water activated polyurethane. Forms a watertight, rigid foam. Meets NSF/ANSI Standard 61 for potable water contact. Requires catalyst.	Seal gushing leaks in structures not subject to movement Permeation grouting Curtain grouting pipe joints, manholes, tunnels, seawalls, etc Void filling	Vary set time by catalyst ratio Forms watertight curtain Pumped as single component Up to 2900% expansion
Prime Flex™ 940	Hydrophobic, super low viscosity, expansive polyurethane. Reacts with water, forms a watertight flexible foam.	Cutting off gushing leaks in concrete subject to movement or vibration Void filling where flexibility is needed	Highly expansive with rapid set timeVary set time by catalyst ratioFlexible
Prime Kat / Kick Fast		ime of our hydrophobic polyurethane injection resins, including P I the desired reaction time. Kick Fast is needed when a very fast so	
PR10L ACLM	Super low viscosity acrylamide grout that yields a gel upon reaction. The grout solution is as thin as water, allowing PR10 to follow infiltrating water for sealing leaks or to deeply penetrate soils for soil stabilization. Meets NSF/ANSI Standard 61 for potable water contact.	Manholes Mainlines of sanitary and stormwater systems Pipe penetrations Lateral connections Mining launch pits / lift stations	Super low viscosity Gel time adjustable from seconds to hours Economical water barrier / soil stabilizer
AR 800	Acrylate, super low viscosity, hydrophilic grout that produces an elastomeric gel with variable set times. Low toxicity acrylamide substitute for leak seal and soil stabilization.	Mainline and lateral sewer grouting Curtain grouting Water control in tunnelling operations Permeation grouting	Uses same equipment as acrylamides Very low viscosity Soap and water clean-up Broad range of set times
AR 870	Acrylate, super low viscosity, hydrophilic grout that produces an elastomeric gel with variable set times. Low toxicity acrylamide substitute for leak seal and soil stabilization.	Water control in tunnelling operations and below-grade vaults, walls, floors, elevator pits Crack injection leak seal	Uses same equipment as acrylamides Soap and water clean-up Broad range of set times
Soakum Oakum Kit	Composed of dry oakum soaked in a hydrophilic polymer solution. When wet and packed or worked into a joint or crack, resin foams to form a flexible/tight joint to stop groundwater infiltration.	Manholes Culverts Stormwater structures	• One 10 foot strip of Soakum Oakum [™] • 48 ounces of resin • 2 Insertion sticks • 8 Pair of vinyl gloves
SoiLok®	Super low viscosity grout designed to penetrate fine silts, sands, course sands and top soil to a desired depth, either below the water surface, below the water bed, or all the way to bedrock. Set time is adjustable in the field. Meets NSF/ANSI Standard 61 for potable water contact.	Curtain grouting Soil treatment and stabilization Tunnels (subway, water, utility, etc.) Storm sewers and box culverts Below-grade parking decks Retaining walls	Variable set time range is extremely long High chemical resistance Extremely flexible Great adhesion even in damp environments Non-corrosive in both liquid / cured forms
Prime Plug 1 Prime Plug 2 Prime Plug 3	Prime Plug 1 Set time: 1 - 2 minutes Prime Plug 2 Set time: 3 - 4 minutes Prime Plug 3 Set time: 5 - 6 minutes	Water stop in concrete or brick masonry prior to resin injection Plug injection drill holes	Rapid setting Excellent bond strength High early strength Different set times Non-shrink

	Product Description	Applications	Advantages	
Prime Rez™ 1000 High Mod	Two-component, low viscosity (250-350cps), high-strength, high modulus epoxy for structural repair. 13,300 p.s.i. compressive strength.	Inject cracks in load bearing structures Gravity feed cracks in concrete General purpose adhesive	Excellent bond strength Moisture insensitive Good chemical resistance	
Prime Rez™ 1100 High Mod LV	Two-component, low viscosity (140-160 cps), high-strength, high modulus epoxy. 8,500 p.s.i. compressive strength.	Inject tight cracks in concrete Gravity feed cracks in concrete	Can be injected under water Excellent bond strength Good chemical resistance	
Prime Rez™ 1200 Low Mod LV	Two-component, semi-rigid, very low viscosity (70-90 cps); 6,100 p.s.i. compressive strength.	Inject hairline cracks in concrete subject to vibration or movement Gravity feed cracks in concrete	Excellent flexibility Excellent bond strength Good chemical resistance	
Prime Rez™ 1450 LV	High strength, two component epoxy designed for structural bonding / filling of wide cracks and void filling. Used for the bonding of different materials such as concrete, steel, wood, and to each other	Examples include: • Concrete to steel • Steel to wood and • Concrete to concrete	High compressive strength Easy to mix 2:1 (A:B) mix ratio (by volume) Can be batch mixed & injected or poured Low viscosity for penetration into narrow gaps or cavities Moisture insensitive	

Prime Gel 2000 High Mod	Smooth two-component epoxy paste adhesive for vertical or overhead uses.	Surface seal cracks Anchor steel into concrete General bonding	Moisture insensitive Excellent bond strength Good chemical resistance
Prime Gel 2200 Flexible	Smooth, flexible, two-component epoxy paste for vertical or overhead uses.	Surface seal moving cracks Fill vertical saw cut joints Vertical and overhead uses Culverts, pipe joints	Very flexible Flexible to 40°F (4°C) Moisture insensitive Good chemical resistance
Prime Gel 2500 Quick Bond	Very fast-setting, strong, two-component non-sag gel adhesive.	Surface seal cracks prior to injection Anchor steel into concrete Good for vertical and overhead uses	Very fast setting Cures at sub zero temperatures Moisture insensitive Good chemical resistance

Prime Bond™ 3000 High Mod	Two-component, medium viscosity, high-strength. Used for bonding new concrete to old or mixed with dry sand to make a repair mortar.	Bond old concrete to new concrete & anchor steel into horizontal concrete Binder for high strength repair mortar and machinery base plates	Moisture insensitive Excellent bond strengths and good chemical resistance Easy 1:1 mix ratio
Prime Bond™ 3500 L	Liquid latex bonding agent for cement-based repair mortars and concrete. It has a long open time, and repair materials can be placed either after it has dried, or while it is still wet.	Repairing concrete w/ cement-based mortars Concrete overlays and toppings Interior or exterior use	Excellent bond strengths Repair materials can be applied wet-on-wet, or after it has dried Easy to use—applied to surface straight from container Long open time—up to 7 days Interior or exterior use Can be used for frequently wet or submerged areas
Prime Bond™ 3900 High Mod LPL	Long pot life, medium viscosity, high strength bonding agent.	Bond old concrete to new concrete in hot environments Binder for epoxy mortar	Medium viscosity Good chemical resistance Long working time High strength
Floor Fix	Two-component urethane resin to mix with kiln-dried sand for a floor repair mortar that is traffic ready in 10 minutes.	Crack and spall repair for warehouse and industrial floors, including freezers Binder for repair mortar	Flowable consistency Excellent bond strength and chemical resistance Fast set time

	Product Description	Applications	Advantages
Prime Coat™ CTL	Black, high build, two-component, coal tar modified epoxy coating for concrete, steel or wood.	Exterior coating for precast concrete Protection of manholes, tanks, lift stations, wood poles	Excellent adhesion Easy to apply (roll, brush or spray
HydroLock	Low VOC, water-based epoxy primer/ sealer, two-component, for concrete, masonry, wood and metal.	Prime concrete, wood and steel	Good chemical resistance High bond strength Reduces off gassing Reduces surface defects of top coat

Joint Shield™ 5500 Polyurea 95A	Two-component hybrid polyurea joint filler for concrete industrial floors.	forklift traffic	Traffic ready in 1 hour Good chemical resistance 1:1 mix ratio
	Heavy duty, semi-rigid.	Suitable for cold storage warehouses and freezers Rout, fill random cracks	Cures at below freezing temperatures

Application - Surface Protection & Waterproofing

	Product Description	Applications	Advantages
Prime Protect SWR	Ready-to-use, water-based siloxane/silane penetrating water repellent sealer. It soaks into the substrate and forms a water and chloride barrier that protects concrete and masonry from the damaging effects of water and salts, especially in freeze-thaw climates and marine environments.	Sidewalks Ramps Walls Industrial floors Parking decks	Low VOC content Breathable Non film-forming; leaves no gloss or shine Can contribute to LEED points It is a breathable sealer that does not alter the appearance or texture of the substrate.

Stain Shield™	Protects surfaces from resin & epoxy stains.	Stain barrier	Biodegradable
		Ideal for slab lifting	Non-toxic

Prime Solvent CGC	Cleans cured grout from injection equipment. Non-carcinogenic, and non-ozone depleting.	Will remove all types of urethanes: flexible, rigid, elastomers, molded, and adhesives.	Low Toxicity Reusable Non-Hazardous Non-Flammable
Eco Flush	Non-flammable solvent great for cleaning equipment and flushing out pump cylinders, lines, & hoses after Prime Flex injection.	Designed for flushing and cleaning Prime Flex polyurethane and Prime Rez epoxy injection resins out of injection pumps and hoses.	Non-Hazardous Non-Flammable

Market Sectors

Prime Resins products can be used in many varied applications, but here are a few markets where we can provide multiple solutions.

Storm & Waste Water Systems

- Seal leaks on laterals using packers and our PR10L ACLM acrylamide.
- Seal sewer main joints and repair leaks on main lines.
- Seal leaking joints, stop gushing leaks and fill voids behind manholes.
- Protect water treatment plant tanks from corrosion with coatings and seal leaks.

Marine and Waterways

- Seal leaks, stabilize soils and fill voids behind seawalls and bulkheads.
- Seal leaks, stabilize soils, fill voids and repair joints on culverts.
- Apply waterproof coatings under water features.

Parking Garages

- Apply waterproof coatings, seal leaks, seal joints, or inject structural repair epoxies for **covered parking** as well as **exposed parking decks**.
- Seal leaks, fill voids or stabilize soils behind **underground structures** including **elevator service pits.**
- Apply waterproofing membranes to roofs, even those with above-ground pools.

Transportation

- Stabilize soils on approach slabs, lift and level concrete bridge panels.
- Stabilize soils beneath concrete panels, lift and level slabs on airport runways.
- Waterproof, seal active leaks, and fill voids behind tunnels and culverts.

Industrial

- Repair cracks and spalls in floors, repair joints, and provide secondary containment coatings for warehouse floors.
- Provide protective coatings and seal leaks around chemical plants.
- Fill voids and level slabs in parking lots and around loading docks.

Residential

- Waterproof basements
- Lift & level concrete slabs as well as fill voids underneath driveways and sidewalks.
- Waterproof and seal leaks surrounding swimming pools.
- Fill voids as well as lift and level concrete panels surrounding swimming pools.

The Patriot

Medium Pressure Metering Pump

The Patriot pump is a rotary gear type, positive displacement, medium pressure metering pump. This portable, compact pump packs a tremendous amount of power, efficiency and versatility in a platform that can easily be handled and operated by a single person. Designed for applying polyurea, joint filling or polyurethane stabilization foams. It can be outfitted with a variety of dispense guns depending on the specific needs of the applicator. Works with the FlowMaster pistol, FlowMaster wand, and the Equalizer gun (see on page 13).

R. PRIME RESINS

The Rebel

Air-Operated, Stainless Steel Pump

The Rebel (available in Rebel 2 and Rebel 5) is for pumping single-component or 1:1 ratio (2 component) materials, including SoiLok acrylates and some polyurethanes. The Rebel is a powerful yet simple air-operated, stainless steel unit featuring consistent air pressure with instantaneous reversing, delivering uniform fluid/mixing pressure. This pump operates from a separate air source. It includes three 25 ft dispense hoses (material 'A', material 'B' and flush.) Can be used to pump SoiLok, Precision Fill, Joint Shield 5500, Prime Flex 985 LX10 & LX20. Works with the FlowMaster pistol, FlowMaster wand, SoiLok gun and Equalizer gun (see Equalizer on page 13).

Rebel 5 model

Dispensing tools

	Product Description	
FlowMaster pistol	The FlowMaster Pistol is a compact, lightweight, divorced manifold type dispense pistol. It is designed to use external static mixers. It has only two moving parts which ensures durability, ease of operation, and minimal downtime in the event of blockage or crossover. It can be used with any plural component proportioner in a variety of dispense ratios. It is used to mix and dispense a variety of Prime Resins products including polyurethanes, epoxies, and polyureas for crack sealing, chemical grouting, stabilizing, and low pressure spraying.	
FlowMaster wand	The FlowMaster Wand is specifically engineered to apply Prime Resins epoxies and polyureas for joint fill applications. It only has two moving parts which ensures durability, ease of operation, and minimal downtime in the event of blockage or crossover. The wand uses external static mixers, and has an integrated guide rod to assist in applying clean straight lines in concrete and asphalt joints. The guide rod is adjustable for use with different length and size static mixers for different applications.	
SoiLok gun	A compact all stainless steel gun designed to dispense Prime Resins line of Soil Lok products. It is designed for use with reusable Stainless steel static mixers in 3/8" and ½" diameter, and is capable of being adapted to a variety of injection ports, tubes, and pipes. It has an integrated manual flush valve which, when used properly, will keep the mixer clean and allow the ports, tubes, or pipes to be reused as well depending on the application. It is equipped with liquid filled pressure gauges at the gun manifold to monitor back pressure at the point of injection. Built with the contractor in mind, the Soil Lok gun is mechanically operated and only has three moving parts (ball valves), which aides in the durability and longevity of the gun.	

Titan airless pumps - modified

Impact: Prime Resins is a Titan authorized dealer. These small, lightweight yet durable electric pumps can deliver any of our single-component Prime Flex products. These are modified specifically for chemical injection. Use in combination with our 1/2" or 5/8" packers, 3/8 or 5/8" Bang-in Ports or grout needle. The Titan Impact series are versatile and economical choices for chemical grout injection. The Titan Impact 440 delivers .54 GPM, and the 640 delivers .7 GPM. Includes a 685-H 4500 PSI high pressure valve and 50' hose. Item #: P-Impact 440, P-Impact 640

The PowrTwin 6900 Plus and 8900 are designed for large-scale projects and feature either a gas engine or electric motor. These pumps deliver the higher volume output required for large projects. Includes a 685-H 4500 PSI high pressure valve and 50' hose.
Item # P-6900, P-T6900, P-T-8900 PLUS

Prime Star manual pump

The Prime Star manual pump is designed for pumping low-viscosity, single-component resins, such as Prime Flex 900 XLV, 910, 920 or 940. It can also be used to pump Hydro Gel SX as a single-component material. This pump is ideal for use as a water pump to flush cracks prior to injection. **Item # P-850**

Prime Dual Flow SS pump

The Prime Dual Flow SS is a powerful and versatile multi-ratio, air-operated unit designed for everyday use with the municipal grout crew in mind. It consists of two air motors with heavy-duty, stainless steel lower piston and cylinders that operate independently of each other. The Prime Dual Flow SS is ideally suited for pumping Hydro Gel SX at multiple ratios or Prime Flex 900 XLV at a 1:1 ratio with water. It can also be used to pump many of the Prime Flex products as a single-component material. The stainless steel also means that acrylamide like the PR10L ACLM from Prime Resins can be pumped with no worries of rust. The operator manually controls the mix ratio. Use the air regulators to adjust the speed of each motor separately and / or use the valve positions to control the ratio of water and grout. Item # 12749

Slab lifting systems

Slab lifting systems

Precision Lift[™] is the perfect balance of science, technology, and technique optimized to lift concrete with greater precision. Done properly, slabs can be lifted precisely through injection of our two-component structural polyurethane foam. Precision Lift[™] is also an excellent choice for void filling behind or underneath structures. We provide multiple systems. Each comes with one day of hands-on, on-site training in the continental U.S. Additional training can be arranged.

The Revolution

Revolution compact slab lifting system

The Revolution Compact Slab Lifting System is an ideal choice for smaller scale jobs such as residential or light commercial work or where access is restricted. It is a compact, portable, easy-to-use, and affordable way to get started in slab lifting and void filling with foam.

This award-winning system comes with a Revolution pump, Equalizer gun (optional), and the necessary pieces and accessories to get started. Designed to fit through a standard doorway, this is the only truly portable system on the market. The unit is ideal for accessing tight spaces, including pool decks, basements and buildings. The Revolution is a two-component slab lifting pump that uses gear-driven technology. Unlike piston pumps, the simplicity of one continuous rotary motion means exceptional output efficiency plus less energy use and wear and tear. The Revolution is a medium-pressure pump with on-board heaters, heated hoses, and a built-in recirculation system. This is a combination of features you won't find on any other pump.

Power Requirements 120v @ 20 amps	
Output Pressure 0-1200 psi	
Max Delivery	1.25 GPM
Heated Discharge Hoses 3/8" x 25'	
Tank sizes	10 Gallon (20 gallon overall capacity)

The Equalizer gun

Conventional impingement guns do not like back pressure. Too much back pressure and the gun crosses over, resulting in labor intensive gun rebuilds, down time, replacement parts and, in some cases, lost hoses. Back pressure at the spray tip is inherent to leveling slabs, void filling and soil stabilization. The Equalizer gun is the only impingement gun engineered to handle back pressure induced when conveying two-component polyurethane foam to lift slabs, fill voids and stabilize soils. Aside from the flow control valves, this gun has no internal moving parts and NO O-rings, which makes rebuilds quick and inexpensive. The Equalizer gun uses an environmentally-friendly, water-based solvent purge system that doubles as a concrete stain preventer.

PRIMERESINS A Division of Carboline

Trailer rigs

PRECISIONLIFT Rigs

Our fully equipped turnkey trailer rigs are perfect for large volume lifting, undersealing, and stabilizing of concrete slabs or soil stabilization. These pull behind trailers are ideal for contractors doing industrial and government/DOT work or large volume residential. We use only the highest caliber equipment to ensure the best material mix quality. The high output generators/air compressors and PMC proportioners we choose are robust and powerful enough to handle heavy loads and mix material most efficiently. You will have the power you need to do a job right.

Precision Lift® Expert Rig

18' long, 8' high, 8' wide tag-along, V-nose trailer that comes equipped with:

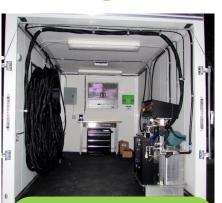
- 23.6 cfm @ 175 PSI compressor
- 21 kw diesel three phase generator with Industrial Alternator
- Regenerative desiccant air dryer
- 2 transfer pumps
- PMC hydraulic proportioner—PH2
- 210' heated hose with scuff jacket
- Built-in recirculation kit

Precision Lift® Professional Rig

22' long, 8" high, 8.5' wide tag-along trailer – tandem axles, comes equipped with:

- 35 CFM air compressor / 35 kw turbo diesel generator combo unit
- Regenerative desiccant air dryer
- 2 transfer pumps
- Hydraulic PMC proportioner—PH40
- 210' heated hose with scuff jacket
- Built-in recirculation kit

SoiLok® Rigs


The **SoiLok® Standard rig** from Prime Resins is a trailer specially equipped for pumping SoiLok® soil binding grout. <u>Specs:</u> 18' long, 8' wide and 8' tall. Twin 7,000 lb. axels. Heavy duty ramp door.

The **SoiLok® Professional rig** from Prime Resins is a trailer specially equipped for pumping our SoiLok® soil-binding grout. <u>Specs:</u> 8' wide, 26' long. Tandem axel. Flat-bed hybrid trailer with enclosed box. 20,000 LB. GVW.

SoiLok® Professional rig

Expert Rig Features:

- Rear ramp door and side door
- Insulated sides and roof
- Lighting
- 8800 GVRW
- 200 gallon material capacity

Professional Rig Features:

- Rear ramp door and side door
- Insulated sides and roof
- Lighting and outlets
- 14,000 GVRW
- Work bench with tool box
- Wall cabinet
- 300 gallon material capacity

PMC PA, PF and Premiere Series hydraulic proportioners

Hydraulic proportioners from PMC are ideally suited for slab lifting using our Precision Lift™ products. Applications include raising sunken concrete slabs, filling voids, and stabilizing soil (compaction grouting).

These machines can also be used for spray foam insulation applications. Prime Resins is an authorized PMC dealer. The PH series features an easy to service pump base; machine functions are controlled by proven relay logic technology, which allows for easy in the field troubleshooting and low cost repairs since there are no printed circuit control boards.

Other features include high efficiency mass style heaters, improved heated hose assemblies, and an innovative temperature sensing unit designed for clean, inexpensive on the job replacement.

High Pressure Ports, Valves etc.

	Product Description	Item #	
3/8" & 1/2" Bang-in ports	Bang-in Ports are easier to install, cost less, and for many applications, are just as effective as more expensive packers. Holds pressure up to 3,000 psi. Not for use in weak, deteriorated concrete.	#12595 (3/8") #12563 (1/2")	
1/2" & 5/8" Mechanical packers	High pressure injection ports for epoxy, acrylate and polyurethane injection. These are longer, at 4.25 and 4.5 inches long to tip of zerk, respectfully. Also capable of pressures up to 3,000 psi.	#11276 (1/2") #11282 (5/8")	
Packer Plucker	Made for quick and easy removal of packers.	#12634	
4,500 PSI high pressure single-component flow control valve	This is the only accessory required to turn an airless sprayer into an injection pump. It allows the operator control of resin flow at the point of injection.	#11914	
Steel "F" valve assembly	This low cost valve assembly was designed to twin stream Prime Flex polyurethanes with water. The mix ratio is controlled by the operator using the two on/off valves that come with the assembly. This is especially useful for injecting Hydro Gel into leaking manholes. 2000 psi pressure valve. Use with grout needle or wall stinger nozzle. Available in carbon steel and stainless steel.	#11303 (carbon steel) #11304 (stainless steel)	
Wall stinger nozzle	This attachment screws directly onto the "F" valve assembly. It allows injection of chemical grout directly through a concrete structure without the need for an injection port. This is ideal for low pressure grouting behind a manhole or a below-grade wall. Not recommended for high pressure crack injection.	#11333	

Low Pressure Ports (0-250 PSI)

	Product Description	Item #	
Surface mount ports w/ attached plastic cap	Surface mount port. Large opening for static mixers. Low pressure only. 100 per bag (includes cap). For use with 1/4" or 1/2" static mixers and Prime Rez 1600 injection gel.	#11283	
Plastic surface mount ports	Inexpensive and easy to use, these ports are great for epoxy and polyurethane injection. Use with Quick Mix cartridges, Single Shot cartridges, and low-pressure pumps.	#11284	
Socket mount ports	For 1/2" holes. Low pressure only. Will accept cartridge systems and other pressure injection equipment. 100 per bag. Used for injection of chemical grouts or epoxy resins for either direct or offset injection. Requires #11287.	#11286	
1/4" caps for plastic ports	Required for use with #653, #655, and #660. Used to close port after injection. 100 per bag.	#11287	
Long zerks for bang-in ports	Bag of 100.	#11279	

Mixers

Product Description		Item #	
1/4" x 32 Element mixer (for injection resins)	Packaged standard with cartridges of Prime Rez 1000, 1100, 1200; Prime Flex 900 XLV, 920 and Prime Flex Hydro Gel SX. 10 per pack.		
1/2" Static mixer (for epoxy gels)	Packaged standard w/ Prime Rez 1600, Prime Gel 2500, Joint Shield 5000 & Joint Shield 5100 Caulk Grade. 10 per pack.	Item #11316	
Static mixer retainer nut	Metal retaining nut	Item #11916	444

Cartridges

	Product Description	Item #	
Quick Mix two-component materials	These dual side-by-side cartridges were designed for dispensing two-component resins. We offer our epoxy, polyurea, and polyurethane resins in this easy-to-use portable system. Packed either 6 or 10 per case with one static mixer and retainer nut per cartridge set. See product technical data sheets for availability and size for specific products. 1:1 (300 ml x 300 ml, 750 ml x 750 ml), 2:1	Various	Quick-Mi
	(300 ml x 150 ml, 600 ml x 300 ml), 4:1 (300 ml x 75 ml), 10:1 (750 ml x 75 ml) ratios available. Static mixing nozzles available 1/4" x 32, 1/4" x 48, 1/2" x 24, 1/2" x 36.		

Quick Mix guns

	Product Description	Item #		
The Beast— Quick Mix air gun— 4" cylinder Works with any product packed in 750 ml x 750 ml (1:150.72 oz), 750 ml x 75 ml (10:127.5 oz), and 300 ml x 300 ml (1:120.28 oz) Nominal thrust 1,100 lbs @ 100 psi/4" cylinder. Converts in seconds with snap in/snap out push disks. Works with Prime Gel 2100, 2200, 2500, Speed Bond #1, Prime Flex 920, Hydro Gel SX.		#11306		
1:1 / 2:1 Quick Mix air gun- 2.5" cylinder	Nominal thrust 490 lbs @ 100 psi/2.5" cylinder. Converts in seconds with snap in/snap out push disks. Works with Prime Rez 1000, 1100, 1200, 1600, Prime Gel 2000, 2100, 2200, 2500, Speed Bond #1, Prime Flex 900 XLV, Hydro Gel SX.	#11305		
	Quick Mix air guns require 80 – 100 psi inbound air pressure than can be supplied from an air compressor, air tank or CO2 tank, making the system truly portable. Available from home improvement, paint, welding, diving, and building supply stores.			
1:1 Quick Mix manual gun	Converts in seconds with snap in/snap out push disks. Works with any product packaged in 300 ml x 300 ml (1:1 20.28 oz), 300 ml x 150 ml (2:1 15.21 oz) cartridges. Works with Prime Rez 1000, 1100, 1200, 1600, Prime Gel 2000, 2100, 2200, 2500 Quick Bond, Speed Bond #1, Prime Flex 900 XLV, Hydro Gel SX.	#11307		
10:1 Quick Mix manual gun	Works with any product packed in 750 ml x 75 ml (10:1 27.5 oz) cartridges, including Prime Flex 920. Item #FG-730	#11308		

Other

	Product Description	Item #	
Oakum	Oil-free oakum jute rope is ideal for stopping gushing leaks in manholes, culvert joints, or electrical conduits when soaked with polyurethane resin. It can be used with Prime Flex 900 XLV, Prime Flex 900 MV, or Prime Flex Hydro Gel SX for the activated oakum method of sealing wide cracks, joints, and pipe penetrations. Prime Resins' oakum comes in 12 lb. boxes.	#12451	
Flush wand	If you are doing high-pressure injection, this inexpensive tool is a must. Use it to reach the back of your drilled holes and flush out concrete dust so that it doesn't contaminate the crack during injection.	#11288	
Soakum Oakum™ Kit	The Soakum Oakum Kit is composed of Soakum OakumTM (a dry oakum) soaked in a hydrophilic polymer solution. When wet and either packed or worked into a joint or crack, the resin will foam to form a flexible and tight joint to stop groundwater infiltration. It reacts with water and becomes a watertight rubber-like composite. The oakum cord gives strength and density to the composite and makes the application of the resin easier, especially when gushers are present. Primary Applications Manholes, Culverts and Stormwater structures Includes One 10 foot strip of Soakum Oakum, 48 ounces of resin, 2 Insertion sticks, 8 Pair of vinyl gloves	#12559	

Deep Probe Injection Accessories

Injection Lances

	Item #	
IL 1/2" Rod - 39" connector (female to female)	12542	
IL 1/2" Rod - 39" base (male to smooth bore)	12541	
1/2" Rod to rod coupler fitting	12962	
IL 1/2" Drive point	12540	
IL 1/2" Fitting buttonhead	12543	
IL 1/2" Fitting - pipe to buttonhead	12545	

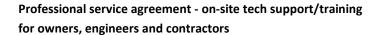
Soil Grouting Accessories

Soil Probes

	I.		
		Item #	
1	SG 3/4 Fitting- buttonhead coupler	12544	6
2	SG 3/4 Fitting - buttonhead fitting	12526	
3	SG 3/4 Fitting - pipe to buttonhead	12525	
4	SG 3/4 Rod - 19.5" connector (female / male) - or - SG 3/4 Rod—39" connector	12524	
5	SG 3/4 Rod - 19.5" base (female / smooth bore) - or - SG 3/4 Rod - 39" base (female / smooth bore)	12523	
6	SG 3/4" expendable drip tip	12520	
7	SG 3/4" slotted drive tip	12630	

Technical Support

24/7 Phone Support


Call our support team at 800-321-7212.

Strong technical support is a long tradition at Prime Resins. Support technicians have detailed product knowledge and practical on-the-job experience. We're available 24/7.

Prime Resins is a great source for high-value expertise from a dedicated team of technical consultants. We know the behavior characteristics of every product, the environments in which they perform best, the appropriate technologies, and the best application techniques.

Mon-Fri 8 a.m. – 5 p.m. EST Support is usually available immediately. Otherwise, a representative is available for emergencies within 30 minutes.

We offer assistance for many situations*, including:

- Critical jobs using unfamiliar technology
- Training sessions for your employees
- Jobs on which the specifying engineer mandates a factory representative on site

€ PRIME DESIGNS

YouTube

youtube.com/primeresins

Training and Education

Join our online community at primeresins.com and subscribe to our e-newsletter to be notified of educational opportunities.

Online resources

Register for webinars. Explore the website for technical datasheets, SDS info, case studies, how-to procedures (Prime Practices), videos, white papers, worksheets, and estimating tools. Follow us on LinkedIn and Twitter.

Training classes

Register for our hands-on training courses —the Prime Resins Chemical Grouting Institute. Schedule a training session at your company or request one at your local distributor.

^{*} Two week advanced scheduling is highly recommended.

Head Office

2291 Plunkett Road

Conyers, GA 30012

T: 770-388-0626

E: info@primeresins.com

W: www.primeresins.com